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The dynamics of two mutually coupled chaotic diode lasers are investigated experimentally and numerically.
By adding self-feedback to each laser, stable isochronal synchronization is established. This stability, which
can be achieved for symmetric operation, is essential for constructing an optical public-channel cryptographic
system. The experimental results on diode lasers are well described by rate equations of coupled single mode
lasers.
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A semiconductor laser, when subjected to optical feed-
back, displays chaotic behavior �1–3�. This phenomenon has
been investigated over the last two decades with synchroni-
zation between two chaotic lasers attracting much recent in-
terest because of its applicability to secret communication
�4–7�. Different configurations, such as delayed optoelec-
tronic feedback �8–10� or coherent optical injection
�11,12,14� have been suggested for the synchronization of
two semiconductor lasers. The coupling between the lasers is
accomplished in a unidirectional �5,8,9� or bidirectional
�10,11,14� fashion, leading to different kinds of synchroniza-
tion phenomena. Recently it was shown that it might be pos-
sible to use the synchronization of two symmetric chaotic
lasers for cryptographic key-exchange protocols, whereby
secret messages can be transmitted over public channels
without using any previous secrets �15�. A necessary condi-
tion for such a protocol is the symmetry in the configuration:
Two identical chaotic lasers should be coupled by identical
mutual interactions.

In a face to face laser configuration �mutual coupling�
where the setup is built symmetrically, isochronal synchroni-
zation, however, was always found to be unstable and one
laser had to be slightly detuned to guarantee a well-defined
leader and/or laggard configuration in order to achieve high
fidelity synchronization �11–13�.

In this paper, we present a configuration of two symmetric
lasers that exhibit stable isochronal synchronization under
symmetric operation conditions. The two lasers take equal
roles in creating and maintaining synchronization without
any symmetry breaking. Although the message transfer using
this system has yet to be tested, this result is an important
ingredient in the transmission of secret messages over a
single public channel in both directions.

A schematic of our experimental system is shown in Fig.
1. Each laser receives a delayed signal from the other as well
as a delayed self-feedback. The time delay between the lasers
is denoted �c, the delay of the self-feedback is denoted �d,
and the coupling and self-feedback rates are denoted � and
�, respectively. The results presented in this paper are for
�d=�c=7 ns but synchronization was observed for other time
delays as well. We measure the degree of synchronization by
the time-dependent cross correlation �16�, which is denoted
as � and defined as follows:
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IA and IB are the time-dependent intensities of lasers A and B,
respectively. We found it convenient to perform the experi-
ments in a synchronization regime where total laser intensity
breakdowns take place, commonly referred to as the LFF
�low frequency fluctuation� �1–3� regime. In this regime,
synchronization as evidenced by the correlated intensity
breakdown of both lasers is easily observed. During the in-
tensity breakdown, however, the system can temporarily de-
synchronize, as was proven numerically in Ref. �17�. In order
to avoid these irregularities in our data analysis we divide the
sequences into segments and we exclude segments contain-
ing a LFF breakdown. The correlation coefficient is calcu-
lated between matching time segments and then averaged
over all segments. The time scale of the intensity fluctuations
was of the order of 1 ns, which is also the experimental time
resolution. For this reason we also averaged the simulation
results over 1 ns, so that IA

i is an averaged intensity for a
window of 1 ns at time i. We arbitrarily chose the size of
each segment to be 10 ns, which is an order of magnitude
smaller than the average time between breakdowns—around
150 ns, and thus each segment consists of ten points �each
point of 1 ns�.

Figure 2 shows the shifted correlation coefficient ���t�
�9�, which is obtained by calculating the correlation coeffi-
cient between the outputs of the two lasers when one is con-

FIG. 1. A schematic figure of the two coupled lasers. BS, beam
splitter; PBS, polarization beam splitter; NDF, neutral density filter;
PD, photodetector.
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tinuously shifted in time with respect to the other. The four
graphs exhibit the dynamics of synchronization for different
relations between coupling and self-feedback rates, � and �
�19�.

In all the graphs the symmetry is evident. Without self-
feedback, when �=0, we find high correlation for time de-
lays of ±�c �7 ns� and no correlation at zero time delay, im-
plying an achronal synchronization that was discussed in
Ref. �12�. A further investigation of the symmetry of the
achronal synchronization is given later in this paper.

One can clearly observe that in the other three cases dis-
played, for which ��0, there appears a very high correlation
at zero time delay. For �=�, for instance, the experiment
results show an average value of 0.92 and a most probable
value of 0.99. In the simulations we report an even higher
correlation which indicates complete synchronization in be-
tween the breakdowns. We can also see secondary peaks at
�t= ±n�d, where n is an integer. These peaks reflect the fact
that the chaotic waveform has some self-correlation at time
intervals of n�d, where n is a small integer, due to the self-
feedback. The above results hold, experimentally and in
simulations, for the case of �c=�d. An interesting observation
is that also for �c=n�d where n is a small integer �up to about
3�, stable isochronal synchronization appears. This is suppos-
edly because of the self-correlation mentioned above.

In our numerical simulations we explored the phase space
of � and � for �c=�d as displayed in Fig. 3. Stable isochronal
synchronization appears over a wide range of values of � and
� �the dark gray circles in the graph�. Without self-feedback
the isochronal solution is unstable and the achronal synchro-
nization appears indicated by the open circles. Achronal syn-
chronization also appears when �c��d.

We now give a more detailed description of the numerical
simulations and the experimental results. To numerically
simulate the system we used the Lang-Kobayashi equations
�18� that are known to describe a chaotic diode laser. The
dynamics of laser A are given by coupled differential equa-

tions for the optical field, E, the time-dependent optical
phase, �, and the excited state population, n;
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and likewise for laser B. The values and the meaning of the
parameters are those used in Ref. �17�.

FIG. 2. Correlation coefficient between laser
intensities at different time delays for �c=�d

=7 ns; �, self-feedback rate; �, coupling rate.
The results of the experiment are plotted with a
solid black line and the results of the simulations
with a gray line, which has been shifted up by 0.4
for clarity. Different � values affect the dynamics
of the synchronization �in the simulations we
kept �+�=100 ns−1�. For �=0 �face to face con-
figuration� we observe a coexistence of leader
and/or laggard situation. When ��0 the isochro-
nal synchronization is stable �maximum correla-
tion in zero time delay�.

FIG. 3. The phase space of � and �, with �A=�B, �A=�B, and
�c=�d �20�.
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In the experimental setup we use two device-identical
single-mode semiconductor lasers emitting at 660 nm and
operated close to their threshold currents. The temperature of
each laser is stabilized to better than 0.01 K. Both lasers are
subjected to a similar optical feedback. The length of the
external cavities is equal for both lasers and is set to 105 cm
�round trip time �d=7 ns�. The feedback strength of each
laser is adjusted using a � /4 wave plate and a polarizing
beam splitter and is set to approximately 2% of the laser’s
power. It leads to a reduction of about 5% in the solitary
laser’s threshold current. The two lasers are mutually
coupled by injecting another 2% of each one’s output power
into the other one. Coupling power is controlled by a neutral
density filter. The coupling optical path is set to 210 cm
��c=7 ns� which is equal to the round trip length in the ex-
ternal cavities ��c=�d�. Two fast photodetectors �with re-
sponse time 500 ps� are used to monitor laser intensities,
which are simultaneously recorded with a digital oscillo-
scope �500 MHz, 1 GS/s�. Fine frequency tuning of the two
lasers is crucial for the establishment of synchronization.
This can be achieved by scanning one laser’s temperature.
While doing so we monitor both laser intensity signals on the
digital scope. The desired temperature is attained when there
is no obvious leader or laggard, i.e., both breakdowns occur
simultaneously or within a time less than �c of each other and
neither laser can be declared as the leader. The symmetry
breaks a 0.02 K deviation from this temperature and one of
the lasers turns into a laggard or leader, i.e., its signal seems
to follow or precede the other laser’s signal by a time �c.
Whether the laser becomes a leader or a laggard depends
very sensitively on the relative output powers of the two
lasers.

Isochronal synchronization is established when the self-
feedback round trip times ��d� of both lasers and the coupling
optical travel time ��c� between them are all equal. In this
type of synchronization we get a maximum overlap between
the two signals for zero time delay between them. For fine
tuning of the optical path lengths, two of the mirrors in the
experimental setup were mounted on translation stages to
simultaneously adjust �dA and �c to be equal to each other
and to �dB which remained constant. We found that once high
fidelity synchronization was established, even a change of
100 �m in the location of the mirrors caused the synchroni-
zation to deteriorate. This agrees with the results of the simu-
lation that show that the synchronization is sensitive to small
changes in �c and �d �see Fig. 4�.

One of the challenging applications of chaotic lasers is in
cryptographic systems. Unidirectional coupling was used for
the creation of a secret-key cryptographic method �21�, how-
ever, for the purpose of public-key systems such as a key-
exchange protocol, one must use a symmetric system in
which the two lasers have symmetric dynamics �22�. We
therefore wish to discuss the symmetry of the synchronized
states. The symmetry of the isochronal synchronization is
nearly perfect, but the symmetry of the achronal synchroni-
zation, with �=0, needs further investigation, as the correla-
tion displayed in Fig. 2 is averaged. In our numerical simu-
lations we observe that between the LFF breakdowns there is
a high cross correlation both with delay +�c and −�c, even
without averaging over segments, as if the leading role is

shared by the two lasers. Therefore, in the areas between the
breakdowns there is considerable symmetry in the laser in-
tensity sequences, whereas at the breakdowns, this symmetry
is broken and the lasers exchange the leading role randomly
between them, i.e., sometimes A falls before B and some-
times vice versa. Figure 5 displays a histogram of the ratio of
the cross correlation with delay +�c and with delay −�c, de-
noted as ��+�c� /��−�c�. The peak at 1 indicates a high sym-
metry throughout the sequence. The inset of Fig. 5 displays a
histogram of the time delay between the breakdowns of la-
sers A and B. The two peaks at ±�c indicate that about half of
the falls are lead by laser A and the other half by laser B. We
conclude from these results that the achronal synchronization
might be suitable for cryptographic purposes when excluding
the LFF breakdowns, or in parameter regimes in which LFF
breakdowns do not appear but the signal is still chaotic.

It is evident from the discussion above that for two mu-
tually coupled lasers without self-feedback ��=0�, isochro-

FIG. 4. A typical experimental time sequence of laser intensities
for isochronal synchronization. The system parameters are ���
and �c��d. The lower figure is a more detailed view of the figure
above it.

FIG. 5. Numerical simulations results for the achronal synchro-
nization with �=0, �=100 ns−1, and �c=7 ns. The relative prob-
ability of the ratio of the cross correlation of two time delays
��+�c� and ��−�c�. Inset: A histogram of the time delay between the
breakdowns of the two lasers A and B, for the same parameters as
above.
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nal synchronization is not stable, yet by merely adding self-
feedback, the isochronal synchronization becomes stable.
This appears for a wide window of parameters. We do not
prove here the stability or measure the distribution of
Lyapunov exponents, but rather give an intuitive explanation
for the difference between a system with and without self-
feedback.

In a system without self-feedback each laser receives the
delayed signal of the other laser. Starting from different ini-
tial conditions, even if after some time the lasers come very
close to each other, they still have a different history which
prevents them from completely synchronizing, because each
laser continues to receive a different signal, EA�t−�c�
�EB�t−�c�. Only if the two lasers reach a state in which
their optical field and phase over an entire window of size �c
is close enough, will they manage to remain synchronized.
Otherwise, their different histories will drive them to achro-
nal synchronization.

In a system with ��0, on the other hand, each laser re-
ceives the delayed signals of both lasers. Even if their history
is different, the two lasers receive the same signal. It is then

easier for them to remain synchronized because the differ-
ence in their delayed values does not affect the synchroniza-
tion.

Another way to put this argument is by looking at one of
the necessary conditions for isochronal synchronization. In
order for isochronal synchronization to exist, the condition
that dEA�t� /dt=dEB�t� /dt must be satisfied, because the la-
sers’ dynamics are first order differential equations. When
�=0 and the lasers start in different initial states, this condi-
tion is only satisfied if EA�t�=EB�t� holds for every time t
over the interval �t , t+�c�. However, when ��0 and
�A=�A=�B=�B, then dEA�t� /dt=dEB�t� /dt immediately
follows. Therefore, a necessary condition for synchronization
is more easily fulfilled for ��0.

In conclusion, the existence of a stable symmetric iso-
chronal synchronization has been demonstrated in coupled
lasers with self-feedback. In coupled lasers without self-
feedback we have shown that partial symmetry appears in
the form of achronal synchronization. The synchronization
methods open the possibility of implementing optically cha-
otic systems in different communication tasks.
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